
Trigger Your Test
Automation Strategy:
The QA Leader’s Guide to Effective Test Automation

2

Index:
1. Introduction

2. Expanding the Role of Test Automation in Your Testing Strategy

3. Implementing and Balancing Automation

4. Select the Right Automation Framework and Tools

5. Which Tests Should You Automate?

6. How to Integrate Automation with your Test Cycles

7. How to Measure the Success of Your Automation Program

8. Conclusion

3

4-5

6-9

10-12

13-16

17-19

20-24

25-26

Introduction

3

If you’re on a software QA team these days, you’re probably running some kind of test
automation. Automation is a vital component of any modern testing program—our 2023
Software Testing & Quality Report found that 62% of respondents ran more than 100
automated tests per day in 2022, and we’ve found that QA teams are consistently automating
about 40% of their tests year-over-year since 2019.

It’s easy to see why test automation is so important for successful QA. Automating tests allows
you to test more features faster, get releases out the door sooner and with fewer defects,
decrease human error, test at scale, and free up your team’s time and resources.

However, developing an effective test automation program that produces tangible results is
often a bigger challenge than QA teams bargain for. As you launch and scale your automation
program, you’ll likely find friction around deciding what to automate, surfacing results from
automated testing, the costs of maintaining your test automation infrastructure, adopting tools
and framework that your team can support, and integrating automation into your agile test
cycles.

While automation is key to any modern testing team, few teams build out their automation
with a way that allows them to achieve consistent success. This guide is intended to introduce
key concepts around test automation, steps to guide your automation strategy, and help you
measure the success of your automation to deliver consistent results.

Trigger Your Test Automation Strategy

Expanding the Role of
Test Automation in Your
Testing Strategy

5

Expanding the Role of Test
Automation in Your Testing Strategy

When it comes to forming a test automation strategy, many organizations aim to automate as many
of their existing manual tests as possible. If you can simply take what you’re already doing and
automate it you’re all set, right? Not necessarily—this approach will certainly increase your number of
automated tests, but it may not give you the efficiency and improvements that will earn a good return
on your investment.

Building and perfecting your test automation strategy might seem like a daunting prospect, but it can
really be distilled down into six concrete steps:

Trigger Your Test Automation Strategy

Implementing and
Balancing Automation

7

Implementing and Balancing Automation

Five questions to ask before starting with test automation:

1. What is our team’s goal for test automation?

2. How are we going to implement test automation?

3. What is our execution strategy?

The answer to this question forms the basis for all decisions made after. A unified guiding
goal, a north star, will provide the direction your team needs when undertaking such a
significant project. This goal also forms the metrics for how you will define success—at this
point of the process, you should be deciding what you will be quantifiably measuring to
ensure that your automation strategy is helping your team achieve this goal.

Implementing and maintaining automation isn’t just a side task. Different teams and skillsets
are often responsible for the many moving parts that go into a successful automation suite,
and you may need to loop in talent from outside of your current testing lineup. Decide on
your allocation of talent first and then select tools and technologies based on their expertise
as well as the needs of your system.

Your execution strategy should answer all of the questions you anticipate your team could
ask regarding the day-to-day running of the automation program. This includes questions
like:

• When would you like to run your automated scripts?
• At what level are we running these tests? Component, integration, end-to-end?
• Where are we running them—do we have adequate environments?
• Where are we running these tests? I.e., at what level and against what environment?
• How frequently are they supposed to run?
• Who will be running them—or would you like an automated trigger as soon as any new

code gets checked in?

Depending on your answers to these questions, you may need to look at the continuous
integration (CI) system you already have (or need), and any additional setups or plugins
required to run your automation scripts.

8

Implementing and Balancing Automation

4. Who will focus on maintenance?

5. How will we report on test automation?

“Automate everything” is not the answer

Automation is unfortunately not “set-it-and-forget-it.” Your automation program will require
consistent test script maintenance and troubleshooting, in addition to adding and removing
tests as needed. Everyone on an agile team should feel ownership over automation work
and be empowered to maintain and improve it, however, we also recommend defining a test
automation champion on your team to keep an eye on your automation efforts and surface
alerts and concerns to the rest of the team.

Go back to step one. Remember how we asked you to define your team’s goal and how you’ll
measure your progress towards it? Now, it’s time to develop the systems and processes
necessary to reliably and quantitatively report on those goals, at set intervals that make
sense for your team’s Software Development Life Cycle (SDLC).

Once you start to get metrics and results back from your automation efforts, you should
get a sense for how automation is fitting into your holistic testing strategy. It’s important
to choose tools that allow you to oversee, measure, and report on manual and automated
testing in one place—and structure your reporting process so that both manual and
automated tests can be included in test coverage and traceability reports.

It’s critical to also track and report on time: how fast are automated tests being executed?
Are there opportunities to improve automated test runs to be more efficient with their time?
We’ll focus more on that in the “Which Tests Should be Automated” chapter below.

If you just “automate everything,” you’re not doing any evaluating. It may feel like you’re saving time
and resources in getting your test automation strategy off the ground, but you’ll end up with a bunch
of automated tests with no clear purpose or goals. And automated tests still have resource costs—
human developers will need to maintain and troubleshoot those tests, and there are time and server
costs to run them and store results.

Additionally, not every test is even a good candidate for automation. Automation is best for testing
“happy paths” of expected user behavior, but it can’t replicate unexpected user behavior to find
edge cases. No testing method is better at performing odd human behavior than human testers—
by removing the human element from your testing program entirely, you open yourself and your
application up to more risks.

9

Implementing and Balancing Automation

Automation is not built in a day

Even with the best-laid plans, a perfect automation program is not going to spring forth overnight. The
first step of building your automation strategy should be getting it to “good enough,” launching, and
setting realistic goals to improve and increase over time.

The most worthwhile investment you can make in the beginning is on your automation infrastructure.
If you know that your infrastructure is solid, then when something fails, you’ll be able to hone in on the
failure of that thing specifically rather than having to examine your entire automation program.

Trigger Your Test Automation Strategy

Select the Right
Automation Framework
and Tools

11

Select the Right Automation Framework
and Tools

Who will be using the framework and conducting the tests?

Who will be using the framework and conducting the tests?

The skills and strengths of the team members involved should be a major factor in your decision.
While of course people can learn new skills, if your framework requires JavaScript and nobody who will
be working with it already knows JavaScript, that’s not the kind of thing that can be learned overnight.
Also take into consideration the learning curve required to learn the framework and how that will
impact onboarding.

Also consider who will be conducting the tests—if you plan on having your manual testing team also
manage automated tests, maybe a low-code option would be best. If you’ll be having developers write
their own test code, pick a tool that uses the same language they’re already familiar with. If you have
specialized test automation engineers, consult them on their recommendations and experiences. And
if everyone will be involved, you need to come to an agreement on what is best given your project’s
context.

Not every framework will be the best choice for every strategic need. Ensure you consider these
requirements when comparing automation frameworks:

• Technologies being tested (mobile app, web app, etc)
• Test levels (component testing, end-to-end testing, etc)
• Limitations (such as cross-browser testing)
• Integrations with other tools (such as your test management platform)
• Customization (do you have the ability to add/create plugins for everything you need?)
• Reporting (how easy will it be to show results and debug when tests start failing?)

Not all test automation frameworks and tools are created equal—they can vary widely in costs,
strengths, capabilities, and ability to scale and customize. Some are “low code” and some require
proficient technical knowledge. So which is the best choice for your team? You can use some
parameters to help guide this decision:

https://www.youtube.com/watch?v=SDeQ3LL3KeE
https://www.youtube.com/watch?v=SDeQ3LL3KeE

12

Select the Right Automation Framework
and Tools

What are the general framework quality indicators?

Does your proof of concept make sense?

Even if a framework looks perfect on paper, you should also take into account some general quality
indicators.

Support and Usability
• Does it have robust documentation?
• Does it seem to want to help you develop tests in an easier manner?

Maintenance and updates
• When’s the last time the framework was updated?
• How often is the framework updated?
• Does it appear to be well-maintained?

Community size and support
• Is there a large, active user community?
• Is there a place (such as a community forum) where you can go to seek community support if you

need help?

Before committing to a framework, you should always do a proof of concept using that framework in
your actual project. This will ensure that it works in context, with all the technologies you need to test.

As part of this, be sure to involve everyone who will be developing the test cases in this proof of
concept. If you don’t, you might end up with a framework that works for you but not the rest of your
team—which will lead to nothing but problems in the future.

Trigger Your Test Automation Strategy

Which Tests Should You
Automate?

14

Which Tests Should You Automate?

Questions to help you prioritize what to automate next:

Is the test going to be repeated?

Is it a high-priority feature?

Do you need to run the test with multiple datasets or paths?

Is it a Regression or Smoke Test?

Automating a test case will be worthwhile if it is going to be repeated multiple times during
test execution. Make sure to consider the frequency with which you plan to execute that test
case or the test suite.

Some features or areas are more prone to failure than others, and those are the areas that
will be a bigger return on your investment in automation. Automating high-priority tests will
help you identify more significant risks earlier in the testing process and reduce the chances
of human error.

A data-driven approach to test automation can be the most useful framework when tests
need to be executed with varying datasets. Automating once and repeating the same steps
with different data takes away the drudgery and minimizes the chances of misses or errors.

Regression tests and smoke tests are the ones you will end up executing the most
frequently. Generally, these test suites are the ones that cover the width of the entire product
in some capacity, so automating them will give you a quicker way of assessing the quality of
the entire software. Automating regression test suites can help integrate them with the build
process in your DevOps pipeline thus making quality a part of your regular build!

After you assess your testing strategy, prune out unneeded or redundant tests, and maybe even add
some new ones, you’ll have a stack of tests and the million dollar question—to automate or not to
automate? Start by asking yourself these questions.

https://www.youtube.com/watch?v=cCVj102Enuc
https://www.youtube.com/watch?v=cCVj102Enuc
https://www.testrail.com/blog/automate-testcase/

15

Which Tests Should You Automate?

Does this automation lie within the feasibility of your chosen test
automation tool?

Is the area of your app that this is testing prone to change?

Can these tests be executed in parallel, or only in sequential order?

Doing a feasibility analysis of your test automation also requires you to see if it is even
possible to perform that specific test automation using your current set of tools. For
example, trying to automate inputs to a mobile app for one specific test might not be the
best use of your time if it isn’t supported by your web automation test tool. Acquiring another
tool or trying alternates might not be a good use of the time either. You might very well
perform that one test manually in such a case!

This is an important question to ask yourself because If the test you are considering
automating is prone to change, it might not be worthwhile to spend your effort on that just
yet. Moreover, automated tests that rely on the user interface and the UI elements are the
most prone to break when the UI changes.

Take a deep look at the upcoming changes in the functionality and its integrations with
related features, if you see big changes ahead, perhaps delay the automation of those tests
for now.

If you design your automation well, you can save an immense amount of time by running
tests in parallel. Leveraging this is paramount to getting the best out of your automation
efforts. If your tests are only executed in a certain sequential order, they might not be the
best candidates for automation. Although you could still automate them, you would not be
making the best use of your efforts.

16

Which Tests Should You Automate?

Scoring model:
To automate or not to automate?

Download Now

That is the question. To make this decision easier on you, we’ve
developed this scoring model to help you prioritize what to automate
next and guide your automation strategy. Download this interactive,
customizable spreadsheet here:

https://docs.google.com/spreadsheets/d/12ilW5-WkQ-aWcXs--R-bYpe61x3auR5Mk2mtc4rRWtM/edit?usp=sharing

Trigger Your Test Automation Strategy

How to Integrate
Automation with your
Test Cycles

18

How to Integrate Automation with
your Test Cycles

In order for automation to make your testing truly more efficient, it needs to integrate intelligently
with your test cycles. If your test cycles are not synchronized with your development cycles—or you
segregate your automation team from your development team altogether—that’s not agile and that
won’t help you achieve faster, more efficient releases.

Decide where automation efforts will fall across your sprints

Establish a process for your testing workflow

Teams generally approach automation efforts within their sprints one of two ways—executing
development and test automation activities simultaneously within the same sprint, or alternating
efforts, so features developed in one sprint are automated in the next one.

Having development and automation efforts running in parallel certainly gets your tests automated
faster, but it takes a full-team effort to execute efficiently. If you only have one automation tester for a
whole team of developers, you won’t be able to automate everything–especially features developed
late in the sprint. The whole team will need to be on board for both developing features and then
automating the tests for those features for this approach to generate benefits.

Alternating development and automation efforts allows your team to fully concentrate on one thing
at a time, ensuring steady progress with both development and test automation even if you don’t
have a large team able to dedicate their time to both during each sprint. However, this method means
that your development and automation efforts will always be on a one-sprint delay—and your team
must manually test features that are developed within the “development” sprints as they won’t be
automated until the next sprint.

The most important principle of test automation in an agile workflow is ensuring that your whole team
is working together towards your goals. If you segregate your automation team from development,
that’s not agile. However, you can loop in an automation support team when additional resources are
needed, such as when you are creating your automation framework.

Whether you automate your tests within the same sprint or on alternating sprints, you need to
establish a process for your testing workflow and ensure the rest of your team is on board.

After features are developed, you should then:
1. Design test cases
2. Execute test cases manually to validate that sprint’s features
3. Automate tests only after the features are validated (either within the same sprint or

on the next)

19

How to Integrate Automation with
your Test Cycles

Determine how you will execute automated tests

Additionally, you’ll want to strategize how you batch and organize your
automation execution.

After your tests have been automated, you need to establish a strategy for executing them. Teams
generally execute their automated tests one of three ways:

On every deploy or
merge request

• Merge requests happen
very frequently, so these
tests would have to run fast

• However, this method would
provide the fast feedback
needed for a “shift left”
approach

• Deploys happen less often
than merge requests

Batch and prioritize test cases
into a series of executions that get
progressively more advanced (such
as smoke tests to regression testing)

This way, if a smoke test fails, you
only have to re-run that one quick
execution rather than a full regression

Don’t batch all of your automated
tests into one huge execution

If a single high-priority test fails, then
that entire execution will have to be
run again

• Tests are run on-demand—
someone manually triggers
the testing

• Tests are run every night,
overnight

On a trigger Overnight

Trigger Your Test Automation Strategy

Integrate Automation with
your Test Management Tool

21

Integrate Automation with your Test
Management Tool

It’s important to integrate your test automation with the rest of your test management process.
One of the challenges teams face around test automation, especially as they get started, is a lack of
visibility. By integrating your test automation with your test management tool, you can make it easier
for your team to get access to your automation results, measure the output of test automation more
easily, and take action on any product risks they identify.

When selecting a test automation tool or framework, make sure it can integrate with your test
management platform. This functionality is commonly available via a command line interface (CLI)
tool, API connection, or plugin. Once integrated, automated test results are automatically sent to
your test management platform as tests are completed. This allows you to view your automated and
manual testing data all in one place, giving you a holistic view of your testing program. The automatic
transfer of test results lets you see defects and risks as they surface, empowering your team to take
action faster. Additionally, such an integration also allows you to run and analyze reports on automated
test data using the full capabilities of your test management platform.

You’ve prioritized what to automate, built your infrastructure, and officially launched your automation
program. What now?

Now is time for the most vital step of all: measuring and reporting on your results. This will help prove
your automation program’s ROI, identify areas for development and resource allocation, and steer
your strategy for the next update and beyond.

How to Measure the Success of Your Automation Program

22

Integrate Automation with your Test
Management Tool

Just integrating your automation with your test management tool is not enough—you must also
regularly assess the health and success of your testing program via testing data, and provide
actionable and easy-to-parse reports to your stakeholders and team.

You’re likely already doing quite a lot of analyzing and reporting with your existing test program, and
the good news is that test automation doesn’t require you to reinvent the wheel. In fact, segregating
your manual and automated test data will do you quite a disservice. Your test automation data should
be included alongside your manual testing data when performing analysis and reporting so that you
and your team can see the full picture of how your testing program is performing.

A good test management platform should make it easy to pull reports on your cases, defects, and
test results—and roll that data into summary reports that paint a clear picture of the health of your
milestones, test plans, test runs, and projects as a whole. These reports should include all testing data,
both manual and automated.

Additionally, by integrating your test automation results into a test management tool that also
integrates with an issue tracker such as Jira, you can roll your manual and automated tests into
traceability and test coverage reports. These reports ensure that all product functionality is
being tested, and establishes a documentable trail between the work being done on your QA and
development teams.

A few automation-specific items that you should be sure to include in your reporting are execution
time and test flakiness.

Using TestRail as an example—test execution time is one of the data fields that will be populated when
you integrate your automation platform using the TestRail CLI. You can see an example of test details
showing the elapsed time it took to execute the test here:

Prioritize reporting and analytics

https://academy.testrail.com/catalog/info/id:131,cms_featured_course:1
https://academy.testrail.com/catalog/info/id:131,cms_featured_course:1

23

Integrate Automation with your Test
Management Tool

Tracking test execution time gives you visibility
into global execution time trends, as well as
allowing you to identify tests that are especially
time consuming so you can optimize them. You
can view execution time via a TestRail report by
producing a Summary - Runs report and adding
‘Elapsed’ and ‘Elapsed All’ to the Tests section
while setting it up.

Test flakiness—a term used to describe tests
that produce different results through multiple
executions without any change to the script or
system under test—can also be easily tracked in
a test case management tool. In TestRail, you can
accomplish this by adding a custom result field
named “Flakiness” that includes the status values of:

As automated tests fail and testers explore the cause, they can assign a status value to flag tests that
they identify as flaky or in need of further investigation. You can then run a report that groups tests by
Flakiness to quickly surface tests that need design correction—allowing you to quarantine them from
your test suite before they create further risk of defects.

You can learn more about flagging flaky tests in the TestRail Academy.

• Not Flaky
• Flaky
• Investigate

https://academy.testrail.com/catalog/info/id:131,cms_featured_course:1

24

Integrate Automation with your Test
Management Tool

Now that you’re measuring your success, make sure you’re sharing it! Ensure your QA team has
access to the latest testing data and reports so they can see the impact of their work in real time.
The dashboard of your test management tool is a great place to share up-to-the-minute results,
and consider also sharing insights and learnings from your analysis during your standups or team
meetings.

You should also be sharing regular summary reports with stakeholders external to your team to
keep them informed on your high-level insights and progress. Be sure not to overburden external
stakeholders with too much information—curate your summary reports in your test management tool
to only generate the information that each stakeholder needs to know.
While your manual and automated test data will be in one place, be sure to keep an eye out for trends
and shifts that will come after introducing new automation. You should have plenty of testing data
to use as a benchmark before introducing automation—what changed after you launched or made
updates to your automation program? Hopefully the data will trend towards faster, more efficient
releases—but keeping a careful eye on the impact of new tests and programs can also highlight areas
you need to improve or reconsider.

The greater the visibility your QA team, development team, and external stakeholders have into
your testing program, the easier it will be to be truly Agile. Visibility is a good practice for any testing
program, whether manual, automated, or any combination thereof.

Ensure visibility across teams and stakeholders

Trigger Your Test Automation Strategy

Conclusion

26

Conclusion

The foundation of any successful automation program is a solid strategy. We hope this guide helped
provide you with a better understanding of how to approach automation for your team’s unique needs,
integrate automation into your existing testing program, and define and measure its success.

If you’re excited to get started, the best place to begin is with a solid test management platform. Look
for an option that allows you to centralize manual and automated testing data as well as activity from
all your testing, tracking, and project management tools in one place—such as TestRail.

If you’d like to try TestRail out for yourself, we have two ways to get started:

You can learn more about TestRail at testrail.com. You can also visit our support center and review our
test automation documentation here.

Try a 30-day free trial of TestRailSign up for our weekly TestRail
product demo webinar

Sign up Download Now

https://www.testrail.com/lp/testrail-product-demo-webinar/?utm_source=ebook&utm_campaign=automation
https://secure.testrail.com/customers/testrail/trial/?type=signup
http://testrail.com/
https://support.testrail.com/hc/en-us/categories/12886937311252-Test-Automation
https://support.testrail.com/hc/en-us/categories/12886937311252-Test-Automation

27

Acknowledgements

This guide was compiled by Jeslyn Stiles, TestRail Senior Content Marketing Manager, and was made
possible thanks to contributions from Matt Caponigro, Diogo Rede, Nishi Grover Garg, Simon Knight,
Shanu Mandot, Hannah Son, Heather Vercillo, and Peter G. Walen.

