
The Fundamentals of
Test Management

 Test Strategy, Planning, and Execution

 Every software development project includes testing activities. These activities
may be managed formally or informally, by a designated QA manager, or by
various individuals on a development team. Managing these activities properly
is critical if you want to have the best chance of verifying that your application
works as intended.

Keep reading for essential test management topics and tactical ideas to help you
apply the concepts presented.

1. Introduction

2. What is Test Management

3. Define Your Test Strategy

4. Designing Your Tests

5. Managing & Executing Your Testing

6. About TestRail

3

4

8

18

22

30

2

Contents

Introduction

3

It is helpful to think of testing as less of a role and more of an activity that people

do. Everyone tests, but some people specialize and make a career of it. In the

same way, test management is an activity associated with testing. Whether you

are the sole tester on a team or the QA lead manager overseeing all of the testing

for a massive project, you have test management activities such as keeping good

records of tests planned and/or executed as well as more strategic activities such

as developing a strategic plan for test coverage.

Whether your development team follows an agile approach, waterfall approach,

tests entirely manually, or is assisted by automation, this ebook describes the

fundamentals of test management activities and provides insights into how you

can apply them to your unique situation. This ebook will also help you to identify

thinking processes that will help adapt these secrets for your own context.

The Fundamentals of Test Management

What is Test
Management?

5

Definition of “Test”
The word test is used as a noun and as a verb. It’s about testing as an activity and the outcome

of that activity. It’s about the people or organizations who commission that activity and those

who use the results. It’s very much about the people who call themselves testers and the

complex systems on which we work.

To talk about context-neutral testing we’ll need a definition of the word “test” that is context-

neutral. The definition from the American Heritage Dictionary conveys the multiple ways that

we can talk about testing well:

There is not just one definition; rather, there are three variations. All three taken together give

us the foundations we need. Let’s take a closer look at each one.

Test: (noun) a procedure for critical evaluation; a means of determining
the presence, quality, or truth of something; a trial.

 If you are the QA manager, it is very likely that people will assume you are the expert on all

things testing-related. Other team members will have their own views on testing. Some may

even have more experience than you. Expectations of testing are often unrealistic. There may

be people who doubt your competence, value to the team, or even your motivations. It can be

tough.

In your career, you will have to adapt to new and changing circumstances. You will encounter

business and senior project stakeholders. You will be joining teams of various sizes with

different people in them who have widely varying backgrounds. In your role, you may be

running a large team, providing oversight to the testing in a project, advising an Agile team, or

figuring out how testing fits into a continuous delivery process.

Before we start using terms like testing, stakeholder, and stakeholder goals, let’s be clear

about what we’re talking about.

https://ahdictionary.com/word/search.html?q=test&submit.x=0&submit.y=0

6

The term quality is loaded with emotional connotations, but we are rescued by the

same dictionary. Quality can be, “an essential or distinctive characteristic, property, or

attribute”. Now we can see that a test can reveal these properties.

Can a test determine the truth of something? Well, this makes good sense too.

Typically, we need to test an assertion such as, “this system meets some requirement”

or “this system behaves in such a way” or “this system is acceptable” and so on.

There’s a certain amount of subjective judgment involved but we can see that a test

or tests could provide evidence for someone to exercise that judgment and make a

decision.

Critical evaluation involves a skillful judgment as to the truth or merit of something.

A test is a procedure, usually with a series of steps that include some form of

preparation, execution, results gathering, analysis, and interpretation. This isn’t a

definitive description of a test procedure. There could be more steps and one could

break these main steps down further.

The procedure doesn’t necessarily require prepared documentation, but some tests

are documented. Automated tests are always scripted in some way. The important

thing is that there is a clear thought process at the heart of a test. This thought

process is driven by the need to evaluate the system under test with respect to its

adequacy, consistency, behavior, accuracy, reliability, or any other significant aspect

or property. Although documentation is not always necessary, it’s critical to have

access to information about the testing progress and test results to make important

project decisions. Questions such as “What percent of a test run have we successfully

completed?” or “Which tests have been executed in the past 24 hours?” can only be

answered efficiently by using comprehensive test case management software that

makes these details readily available.

A means of determining the presence, quality, or truth
of something

 A procedure for critical evaluation

7

Test: (verb) to critically evaluate; to determine the presence, quality, or
truth of something; to conduct a trial.

From our definition of the noun test, we can derive a verb easily enough.

So far, so good. But not that good. Unfortunately, the testing profession is dogged with

terminological problems. There’s no way we can present a definite glossary here. To avoid

misunderstandings in your projects, I suggest you ask what the goal of any defined test type is

rather than rely on an assumed definition to tell you.

A Trial

The notion of a trial implies that the process of testing a system will help us to evaluate

that system with respect to its qualities. The purpose of such an evaluation is normally

to make a decision.

The decision might be to accept or reject the system, but it might also be to expose

its shortcomings so they can be remedied in some way. A test might also influence an

individual or organization to change direction – to rethink a design; to relax or change

a requirement; to scrap a component and start again; to buy rather than build or build

rather than buy.

A natural way of looking at a system under test is that it is on trial, and will be judged in

some way.

Definition of “Testing”

The Fundamentals of Test Management

Defining Your Test
Strategy

9

If we are responsible for defining a test strategy, we need to identify and engage the people or

organizations that will use and benefit from the evidence testing provides.

If we don’t do this, how can we answer the following questions? What should and should not be

tested? Who will use the evidence we generate from testing? What information do they need? How

will we squeeze all this into the time available?

If there is no stakeholder, no one will take any notice of the outcome of the testing, so there is little

point in doing any testing. We won’t have a mandate or any authority for testing. We won’t get the

resources or time we need. We can’t report test execution passes or failures or ask questions with

any expectation of anyone answering them.

Sponsors: these stakeholders need evidence that the system can support their business

goals and that the risk of failure is acceptable.

Users: these stakeholders need evidence that the system will ‘work’ for them.

Project Management: these stakeholders need to know the status of deliverables (i.e.

application features): are they available, acceptable, and reasonably free of defects? If

there is a problem, the manager may need to

re-plan or at least manage expectations.

Designers and developers: these stakeholders need to know where their products fail – so

they can fix defects or adjust their designs.

What is a stakeholder? In our case, stakeholders are those people who have

an interest in the outcome of tests, and the information that testers provide.

Who are the stakeholders and what do they want? There are four
types of stakeholders based on their needs:

1. Identify Stakeholders

10

Stakeholders must articulate what evidence they need produced. This will start with the business

goals and the product risks of most concern. QA managers and testers need to know what

information is required from the test process.

Sometimes, this will take the form of documentation, but in smaller projects, this information

is often managed through shared wikis, Kanban, or Scrum boards or ChatOps facilities. Team

communications may focus on these shared resources, visible to all. Exactly how the evidence is

provided needs to be agreed on with stakeholders in your project.

Even with stakeholders and contributors aligned around the requirements of a project,

limitations around visibility prevent stakeholders of every level from clearly understanding and

communicating around both testing coverage and status.

One key strategy is to track all of your testing efforts across all users in a tool that updates in real-

time with clear visuals.

 Image: TestRail test runs and results

11

 As you encounter new project situations, what you do to achieve your testing goal will vary.

The test approach you use and almost every activity in that approach varies with the context.

What does not change is the thought process you go through to define that approach.

Your strategy is not simply a document. Your strategy is a result of exploration, thinking, and

collaboration. A strategy seeks to define the process you will use to achieve your testing goals.

It could be a brief set of guidelines that your team follows. It could be a document of 20 to

2,000 pages. The goal isn’t a document, it’s the thinking.

• Presents some decisions that can be made ahead of time.

• Defines the process/method/information that will allow decisions to be made.

• Sets out the principles or process to follow for uncertain situations.

Before you can plan a test, you usually need many questions answered and decisions made.

Some can be answered now, others will have to wait. A strategy, therefore:

“Planning is everything. The plan is nothing.”
– Dwight D. Eisenhower, of the D-Day preparations.

Thinking: When you explore your situation, of course, the answers to your questions will

vary. But the objective – meeting your testing goal – is generic. We’ll explore the questions

you should ask in order to formulate your test strategy.

Logistics: You might decide that testing will take place in stages, with each stage having

different objectives, techniques, and responsibilities for test activities. You must also

decide whether and how you automate some or all of the testing. Perhaps there are no

stages, just a rapid series of activities (possibly automated) that must be completed within

a project sprint. These are the practical, logistical choices you must make. When the dust

settles and testing stages are defined, a Test Case Management solution like TestRail will

streamline test execution, reporting, future strategy, management, and overall quality.

2. Define Your Test Strategy

Strategic Test Planning

https://www.gurock.com/testrail/?utm_source=tr_in_asset&utm_medium=ebook&utm_campaign=fundamentals_test_management&utm_term=&utm_content=pg_11

12

 So, a strategy attempts to answer as many questions as possible ahead of time. Why bother

doing this? Surely, we can address problems in testing as we encounter them? By raising these

questions early, and getting people to think about the consequences, huge difficulties might

be avoided, or at least mitigated, before they threaten the success of your project.

Below are the most important starting points for your information gathering. You could ask

more questions and/or structure the questions differently. In the table below, there is no

mention of the planning process. This could be defined in the strategy or not.

• Stakeholders: See section 1 for questions regarding stakeholders

• Goal and risk management: How are risks identified? Who assesses/approves them?

• Decisions: What decisions must stakeholders make, and how will they be made?

• Confidence: How will the test results give stakeholders confidence in the testing?

• Assessment: How will the quality/thoroughness of the testing be assessed?

• Scope: How will scope be defined?

• Sources of knowledge: What/where/who are the knowledge sources to scope and

specify tests?

• Sources of uncertainty: What causes uncertainty in our sources of knowledge?

• Models: How will test models be derived? How will they relate to stakeholders?

• Prioritization approach: Under time pressure, how will priorities be assigned to tests?

• Test sequencing: How will the sequence of tests be determined?

• Retesting: What is the policy for retesting? For regression testing?

• Environment requirements: Who provides test environments? How will they be delivered,

controlled, and managed?

• Information delivery approach: How will the team deliver results to the stakeholders?

• Incident management approach: How will incidents be managed?

• End-game approach: How will the test process end? (How) will outstanding bugs be fixed

and retested?

Developing A Test Strategy Framework

Stakeholder Objectives

Design approach

Delivery approach

13

 Shift-Left can mean developers take more ownership and responsibility for their testing; it can

also mean testers get involved earlier, challenge requirements, and feed examples through a

Behavior-Driven Development (BDD) process to developers. It can mean users and BAs together

with developers take full responsibility for testing, and it can mean no test team and no testers. We

have seen all configurations and there is no “one true way.”

In a staged project, this might involve formal reviews. In an Agile project, the tester (or developer

or BA or user) can suggest scenarios or examples that challenge the author of a requirement or

story to think through concrete examples and discussion before any code is written.

Shift-Left implies that, whenever possible, you should provide feedback that will help the team to

understand, challenge, or improve goals, requirements, design, or implementation. Users, BAs,

developers, and the entire team should be ready to provide and accept feedback in this way. There

might be resistance, but the overall aim is to run a better, more informed project.

As a QA manager, you need to get testers involved as early as possible by engaging in the

discussion. Be ready to collaborate on ideas, requirements, and every stage where the outcome

of that stage has a bearing on the value of the final deliverable of the project. Simply put, a tester

challenges sources of knowledge, whether these sources are stakeholders, users, developers,

business stories, documents, or “received wisdom.”

Whether you have a Shift-Left approach or not, your test strategy should encourage and align with

these principles.

The Role of Shift-Left Testing
in Your Test Strategy

Sources of knowledge that provide direction for the design and
development of software should be challenged and/or tested.

Shift-Left is mostly about bringing the thinking about testing earlier in
the process.

14

 There are a number of ways that you can document your test plans. The simplest methods

are usually the best. Emphasize creating lean, dynamic documentation that captures the key

pillars of your test planning instead of writing lengthy plans.

One method for generating a lean test plan is mind-mapping. Here is how TestRail Product

Manager Simon Knight writes about approaching mind maps for testing planning in his article,

Test Planning Simplified.

(1) Start with a central node. What needs to be delivered? What is the outcome your

stakeholders are looking to accomplish? This should form the locus of your testing efforts.

(3) From those branches, drill down further into the various items and activities. For the

scope, you can take the requirements, features, or stories as being the next level down (sub-

branches of the Testing Scope branch); and once you have those, you can drill further down

into specific test cases, scenarios, exploratory sessions, or whatever is needed depending

on your preferred testing style.

(4) Do the same thing with all the other nodes and branches until you have enough detail

for a test approach that stands up to some level of scrutiny from your stakeholders and

team.

(2) From this central point, create branches for the other key components of your test plan:

Simon Knight, “Test Planning Simplified.” https://dzone.com/articles/test-planning-simplified

• Testing scope — What will you address with your testing (in scope)? What will you not address

(out of scope)?

• Timescale — When will the testing start and finish?

• Testing resources — Who will do the testing? What will they need? Where will they do it?

• Testing approaches — How will the testing be carried out?

• Risks and assumptions — What obstacles can you foresee? How will those be addressed?

Creating a Test Plan

Mind mapping your test plan

https://dzone.com/articles/test-planning-simplified
https://dzone.com/articles/test-planning-simplified/?utm_source=ebook&utm_medium=ebook&utm_campaign=fundamentals_test_management&utm_term=&utm_content=

15

Another helpful format for developing your test

plan is what Lisa Crispin and Janet Gregory call a

One-Page Test Plan in their book Agile Testing.

Crispin and Gregory call out 11 key components

that you should evaluate when you are creating a

One-Page Test Plan.

 Image: Example of a test planning mind map. Image Credit: Simon Knight, “Test Planning in 2021, Part 1: Test Planning Simplified,” 2021.

 Image Credit: Lisa Crispin & Janet Gregory, “Agile Testing,” 2008.

• Resourcing for testing

• Identification of what is In and Out of Scope

• Description of new functionality to be tested,

including the depth to which that feature

should be tested

• Any performance or load testing that needs

to be performed

• How and when user acceptance testing

(UAT) will be performed

• Infrastructure considerations

• Assumptions

• Risks & mitigation plans

https://www.gurock.com/testrail/test-planning-in-2021-part-1-test-planning-simplified/?utm_source=tr_in_asset&utm_medium=ebook&utm_campaign=fundamentals_test_management&utm_term=&utm_content=pg_15
https://agiletester.ca/
https://www.goodreads.com/book/show/5341009-agile-testing/

16

 Many lean test plans also include other key areas such as defining the timeline for your test

sprint, identifying how you will handle test automation during the sprint, and how you will

generate any test data that will be needed for testing.

One important output for any kind of test planning is identifying risks in your application.

As a team responsible for quality at your organization, you need to make risks visible to

management and propose reliable test methods to address these risks.

To assess a product risk we need to understand what the consequence of that mode of

failure is. If a failure happens, we say the risk materializes. How serious is the risk? We need to

understand how exposed we are to that risk.

The exposure of a risk—how serious a risk it is—is calculated as the product of the probability

and the consequence/severity rank.

• The probability of a risk materializing. This value is typically expressed as a percentage

between (but not including) zero and 100 percent.

• The consequence or severity of a risk materializing. This is the potential cost of the

damage if this mode of failure happens.

Risk-Based Testing

Three Types of Software Risks:

Project risk: These risks relate to the project in its own context. Projects usually have

external dependencies such as the availability of skills, dependency on suppliers,

constraints such as a fixed-price contract, or fixed deadlines. External dependencies are

project management responsibilities.

Process risk: These risks relate primarily to the internals of the project and the project’s

planning, monitoring, and control. Typical risks here are under-estimation of project

complexity, effort, or the required skills. The internal management of a project such

as good planning, progress monitoring, and control are all project management

responsibilities.

Product risk: These risks relate to the definition of the product, the stability (or lack) of

requirements, the complexity of the product, and the fault-proneness of the technology

which could lead to a failure to meet requirements. A product risk represents a mode or

pattern of failure that would be unacceptable in a production environment.

17

Once you have identified a product risk of concern, formulate a set of tests to assess the

likelihood of that risk materializing. The test approach will be to stimulate the failure mode in

as many ways as possible. In so doing, you will see one of two outcomes:

Our tests, collectively, focus on ways in which a selected mode of failure can occur. If we use a

risk assessment to steer our test activity, the testers’ aim becomes explicitly to design tests to

detect faults so they can be fixed, and in so doing, reduce the risk of a faulty product.

Fault detection reduces the residual risk of failures in production, where costs increase very

steeply. When a test finds a fault and it is corrected, the number of faults is reduced and

consequently, the overall likelihood of failure is reduced.

If we focus on critical features and find faults in these, undetected faults in these critical

features are less likely. The faults left in the non-critical features of the system are of lower

consequence.

Ultimately, risk-based testing assessments should guide how you prioritize certain types of

testing around certain areas of your application. If you knew ahead of time what bugs would

occur, how might that alter your test planning choices at the beginning? This is what risk-

based testing does: it helps you to make better choices in test planning at the level of detail of

your risk assessment.

Risk-Based Test Planning:

Failures, which detect bugs to be fixed, thus reducing the risk from that mode of failure.

Passes, which increases confidence that a mode of failure is unlikely to occur.

The Fundamentals of Test Management

Designing Your Tests

19

 Test design is the process by which we select – from the infinite number possible – the tests

that we believe will be most valuable to us and our stakeholders. Our test model helps us to

select tests systematically.

A test model might be a checklist or set of criteria. It could be a diagram derived from a design

document or an analysis of a narrative text. In the case of system and acceptance testers,

typical models are requirements documents, use cases, flowcharts, or swim-lane diagrams.

More technical models such as state models, collaboration diagrams, sequence charts and so

on also provide a sound basis for test design.

Coverage measurement can help to make testing more manageable. If we don’t have a notion

of coverage, we may not be able to answer questions like:

• What has been tested?

• What has not been tested?

• Have we finished yet?

• How many tests remain?

Using Models to Test

We use test models to:

Simplify the context of the test. Irrelevant or minor details are ignored in the model.

Focus attention on one perspective of the system’s behavior. These might be critical

or risky features, technical aspects or user operations of interest, or aspects of the

construction or architecture of the system.

Generate a set of tests that are unique and diverse within the context of the model.

Enable the testing to be estimated, planned, monitored, and evaluated for its

completeness, or “coverage.”

20

Test models and coverage measures can be used to define quantitative or qualitative targets

for test design and execution. To varying degrees, we can use such targets to plan and

estimate. We can also measure progress and infer the thoroughness or completeness of the

testing we have planned or executed. But we need to be very careful with any quantitative

coverage measures or percentages we use.

Once you have developed your test design and test models, you should start to define which

types of tests you are going to run and in what order. Start by outlining the key areas you need

to test, and the priority of those tests.

For example, here is the order in which you might prioritize the test sprint for a new feature

being developed:

Image: Assigning priority levels in TestRail.

You should use a tool to draft your tests that allows you to assign each test a priority level while

you’re drafting them, like Google Sheets or TestRail. Then, you can sort and filter your tests to

ensure you are testing the highest areas of risk first when it actually comes to executing your

testing.

1. Functional smoke tests around a key feature

2. Smoke tests around key risk areas

3. Exploratory tests around new functionality

4. Regression testing (use similar priority-based approach)

Start drafting the tests that will cover your areas of highest risk,

and test outwards from there

21

Once you have outlined your tests for a given sprint, you can then go back and add additional

details as needed. For example, you may create different groups or sections of tests based on

functional area or type of testing.

If you’re using a test management platform like TestRail to write your test cases, you can also

add custom data like development branch name, component, environment details, etc. You

can also write out detailed preconditions, test steps, and expected results to document exactly

what is in scope for testing and help identify potential defects more methodically.

 Image: For some tests, it is important to specify individual test steps and expected results, shown in the

screenshot of a test case in TestRail above.

The Fundamentals of Test Management

Managing & Executing
Your Testing

23

The redistribution of testing triggered by the shift-left approach makes it clear that testers

are not solely responsible for testing; testers don’t own testing anymore.

Developers are adopting better test practices and visibility into their work. Good component-

level or unit testing has specific goals that are distinct from system testing, so the scope (or

amount) of system-level testing could be reduced. The correct distribution of testing goals and

testing to meet those goals is the primary purpose of the test strategy.

The shift-left approach is fundamental to a test strategy for agile projects. In an agile context,

test strategy can be viewed as a series of test interventions. There are critical moments in

all projects where opportunities to gather and give feedback present themselves. The tester

focuses on these critical moments and is ready to contribute at those times.

In your own projects, identify the critical moments where intervention is possible, and the

choices that you and your team can make. For example, should the tester write unit tests for

developers? Should you provide examples to get them started or coach them to improve their

testing ability? Only you and your team can decide this.

Agile Test Interventions

 There are four keys to the successful execution of your plan:

1. People – is your team ready?

2. Environments – do you have the technologies, data, devices,

interfaces to implement meaningful tests?

3. Knowledge – have you prepared your tests with an appropriate level of detail, or

is your team ready and able to explore and test the system in a dynamic way?

4. System Under Test – is the software or system you are to test available?

24

In the table below, you can see the typical intervention types. You might have more or less

interventions active at different points in your own unique process.

As shown in the table above, interventions occur at either the project-level or at the level of a

sprint. The diagram on the next page shows a project-level view and the five key project-level

interventions.

• Story challenge (1) is where the tester validates a user story.

• Story definition (2) is where a tester validates proposed acceptance criteria for a story.

• Integration tests (6) check that new features link correctly with other features and the

system as a whole.

• System tests (7) and user acceptance tests (8) are conducted as appropriate.

 Project Level Interventions

25

26

A project usually has multiple sprints. The diagram below shows the four sprint interventions

that are repeated for each sprint:

Identify the critical moments, propose your contribution, and negotiate with your team.

You offer more test leadership and guidance rather than volunteering simply to take on

responsibility for the testing work. It will be much easier to demonstrate your value to the team

if you take this approach.

 Sprint-Level Interventions

1. The daily stand-up (3) is an opportunity to report progress, raise concerns, identify

risks, or discuss questions raised and answers received during the sprint.

2. Story refinement (4) and contributions to developer testing (5) are day-to-day

activities that occur as part of discussions with users, analysts, and developers.

3. The tester incorporates developer and new system tests into a growing collection of

tests to be automated (6).

27

Effective testing requires curiosity, persistence, and a nose for the problem. Your goal is to

stimulate failures along with the evidence required to trace those failures to defects so that

they can be fixed. Although finding (and fixing) defects is good for the quality of the product,

communicating defects often feels like you are giving bad news to someone. This could be

a developer who has made a mistake somewhere and now has a defect to fix. But you could

also be reporting to stakeholders that some critical functionality does not work correctly, the

system is not ready, and/or delivery will be delayed.

As tests are run by the team, use a tool that allows you to record the status of tests and display

the progress of testing in real time. All tests run would have the tester identified, the date/time,

and test steps noted.

Passed tests might be assigned a simple pass status. Failed, blocked, or anomalous test

results might have screenshots, test results assigned, and an incident report assigned. Many

tools provide hooks to test execution tools that manage and run tests, log results, and can even

create draft incident reports.

 Image: TestRail test runs and results.

28

 While capturing test results and recording findings is important for the sake of measuring

progress and producing a historical record of testing, the most important reason to document

your test steps and results is to be able to quickly submit bug reports if you have identified a

fault in the system under test.

By integrating a test management tool like TestRail with issue-tracking systems like Jira,

you can streamline the process of alerting R&D to defects as soon as they are discovered.

For example, Push Templates in TestRail allow you to define the information you would like

to include in your defect report when you push it from TestRail to a new issue in Jira, like the

summary of the test you were running when you discovered the defect, what code branch you

were testing, what test steps you had taken, and any comments or attachments you added

during the test process.

Then, when you push new defects to Jira, TestRail will automatically send the information you

defined in your push template without you having to task-switch and spend time copying and

pasting data between systems, reducing the chance for human error and helping you speed

up the process of reporting new defects so that the engineering team can take action more

quickly.

 Image: Look for ways to save time, control for human error, and eliminate duplicative work. For example, with

TestRail, you can log an issue in Jira right from TestRail that automatically contains all of your comments, steps to

test, intermediate results, etc.

29

Conclusion

Acknowledgements

The fundamentals of test management start with the definitions of the word test: a procedure

for critical evaluation, a means of determining the presence, quality, or truth of something, and

a trial. These three varying definitions of test set the foundations needed to define your test

strategy.

Your strategy is a result of exploration, thinking, and collaboration. A strategy seeks to define

the process you will use to achieve your testing goals by presenting decisions that can be

made ahead of time, defining the process that will allow decisions to be mad,e and setting out

the process to follow for uncertain situations.

A test management strategy attempts to answer as many questions as possible ahead of

time. Whether you have a Shift-Left approach or not, your test strategy should encourage

and align with these fundamental principles and promote feedback that will help the team to

understand, challenge, or improve goals, requirements, design, or implementation.

In the end, effective testing requires curiosity, persistence, and a nose for the problem. Your

goal is to stimulate failures along with the evidence required to trace those failures to defects

so that they can be fixed.

If you’re involved in software development, hopefully this ebook has provided you with a range

of essential test management topics (including process, modeling, risk, delivery, reporting, and

tools) as well as tactical ideas to help you apply the concepts presented.

Paul Gerrard was the principal contributor to this guide. Paul is a consultant, teacher, author,

webmaster, developer, tester, conference speaker, rowing coach, and publisher. He has

conducted consulting assignments in all aspects of software testing and quality assurance,

specializing in test assurance. He is Principal of Gerrard Consulting Limited and is the host of

the UK Test Management Forum and the UK Business Analysis Forum.

Additional contributors include Jackie King, Hannah Son, Simon Knight, and Matt Caponigro.

30

 About TestRail
TestRail helps quality assurance (QA), engineering, and development teams speed up testing,

improve product quality, and ship releases faster. More than 10,000 organizations like NASA,

Apple, Microsoft, Activision Blizzard, and Amazon trust TestRail to power their QA and test

management processes.

TestRail is the flagship product of Gurock Software GmbH. Gurock was founded in 2004 and

our globally distributed team focuses on building and supporting powerful tools with beautiful

interfaces to help software teams around the world ship reliable software.

Gurock is part of the Idera, Inc. family of DevOps tools, which includes Xray, Ranorex, Kiuwan,

Travis CI, Assembla, and, PreEmptive. Idera, Inc. is the parent company of global B2B software

productivity brands whose solutions enable technical users to do more with less, faster.

https://www.ideracorp.com/leadership
https://www.ideracorp.com/leadership
https://www.getxray.app/
https://www.ranorex.com/
https://www.kiuwan.com/
https://travis-ci.org/
https://www.assembla.com/home
https://www.preemptive.com/

